با همکاری مشترک دانشگاه پیام نور و انجمن جغرافیا و برنامه ریزی روستایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه گلستان

2 دانشگاه فردوسی مشهد

چکیده

براثر فعالیت­های انسانی، چهره زمین همواره دست‌خوش تغییر می­شود. از این­رو برای مدیریت بهینه مناطق طبیعی، آگاهی از روند و میزان تغییرات پوشش گیاهی/کاربری اراضی ضروری است و برآورد این تغییرات اهمیت به­سزایی دارد .هدف از انجام این پژوهش، پایش تغییرات پوشش اراضی با استفاده از تصاویر ماهواره­ای در حوضه آبخیز گرگانرود در استان گلستان است. در این تحقیق، تصاویر سنجنده TM سال 1366، سنجنده ETM+ سال 1379 و سنجنده OLI سال 1398 مورد پردازش و تجزیه و تحلیل قرار گرفت. بدین‌منظور، بعد از انجام تصحیحات هندسی و اتمسفریک، پایش و طبقه­بندی تصاویر با استفاده از شش تکنیک پایش تغییر در حوضه گرگانرود با مساحت 8020 کیلومتر­مربع آنالیز شده و تغییرات رخ داده در این حوضه در دو دوره زمانی، از سال 1366 تا 1379 و 1379 تا 1398 بررسی شد. تکنیک­های پایش تغییر مورد استفاده در این مطالعه شامل تفاضل باند قرمز، تفاضل باند مادون قرمز، تفاضل PCA و تفاضل PCA استاندارد شده، آنالیز برداری تغییر و مقایسه پس از طبقه­بندی بوده­اند. جهت تعیین آستانه از روش‌های آماری استفاده شده است. پس از تعیین آستانه تغییر، مناطق دارای تغییرات کاهشی، افزایشی و بدون تغییر مشخص شده است. جهت ارزیابی دقت تکنیک­های پایش تغییر، پس از برداشت های زمینی که از طریق بازدید میدانی، تصاویر ماهواره­ای گوگل­ارث و عکس­های هوایی به دست آمد، از دقت تولیدکننده، دقت استفاده‌کننده، دقت کل و ضریب کاپا استفاده شد. بر اساس نتایج به­دست آمده، مشخص شد روش PCA1 استاندارد شده در هر دو دوره بیشترین دقت کل و ضریب کاپا را داشته است. مقادیر این دو پارامتر به ترتیب برای دوره اول برابر با 5/96 درصد و 94 درصد و برای دوره دوم برابر با 5/91 درصد و 86 درصدبه دست آمده است. روش  PCA1با دقت کلی و ضریب کاپا برابر با 5/84 درصد و 74 درصد برای دوره اول و 89 درصد و82 درصد برای دوره دوم بعد از روش PCA1 استاندارد شده، بیشترین میزان دقت را بین سایر روش­ها داشته است. در حالی که روش تفاضل باند مادون­قرمز نزدیک، در هر دو دوره از کمترین دقت کل  و ضریب کاپا نسبت به سایر روش­ها برخوردار بوده­ است. بررسی نتایج به دست آمده در این مطالعه به خوبی نشان می­دهد که در فاصله زمانی سال­های 1366 تا 1398، اراضی کشاورزی(دیم) بیشترین تغییرات مثبت را داشته­اند. اضافه شدن این اراضی اکثراً به قیمت از دست رفتن مراتع بوده است(به دلیل حاصلخیزی بالاتر). همچنین، در این فاصله زمانی 32 ساله، مرتع نیز دچار تغییر و تحول شده­اند که تغییرات کاهشی در آن­ها را می­توان به دلیل شخم مراتع و اختصاص آن­ها به کشاورزی دانست.

کلیدواژه‌ها

ارخی، صالح و فتحی ­زاده، حسن(1392). مقایسه روش­های مختلف آشکارسازی تغییرات کاربری اراضی در منطقه بیابانی دهلران استان ایلام. نشریه مهندسی اکوسیستم های بیابان، 2(1)، 80-65.
اسلام ­بنیاد، امیر و حاجی­ قادری، طه(1386). تهیه نقشه  جنگل‌های طبیعی استان زنجان با استفاده از داده­های سنجنده ETM+ ماهواره لندست 7. مجله علوم و فنون کشاورزی و منابع طبیعی، 11(42)، 638-627.
خیرخواه ­زرکش، میرمسعود و حسین ­زاده، فرهاد (1399).  آشکارسازی تغییرات کاربری اراضی شهر اردبیل با استفاده از تکنولوژی RS و GIS. نشریه پایداری توسعه و محیط زیست، 1(3)، 53-45.
رسولی، علی­اکبر(1387). مبانی سنجش از دور کاربردی با تاکید بر پردازش تصاویر ماهواره­ای. تبریز: انتشارات دانشگاه تبریز.
شفیعی، محمد(1383). کاربرد فناوری سنجش از دور در ارزیابی و مدل‌سازی تغییرات کاربری اراضی دشت قزوین. پایان‌نامه کارشناسی‌ارشد، دانشکده انسانی و اجتماعی، دانشگاه تبریز.
طاهری،  فروزان، رهنما،  محمدرحیم، خوارزمی، امیدعلی و  خاکپور، براتعلی(1397). بررسی و پیش‌بینی تغییرات کاربری اراضی با استفاده از داده‌های ماهواره‌ای چند ‌زمانه شهر شاندیز(طی سال‌های 1379-1394)، نشریه جغرافیا و توسعه، 16(50)، 142-127.
علوی­ پناه، سید کاظم(1384). کاربرد سنجش از دور در علوم زمین. تهران: انتشارات دانشگاه تهران.
فتحی ­زاده، حسن، آرخی، صالح و تازه، مهدی(1392). بررسی روش­های مختلف آشکارسازی تغییرات کاربری اراضی با استفاده از تصاویر ماهواره­ای. دو فصلنامه علمی- پژوهشی خشک­بوم، 3(1)، 68-56. 
قاسمیان ­یزدی، محمد­حسن و غیاثوند، غلام­رضا(1378). آشکارسازی تغییرات در تصاویر با استفاده از تحلیل مولفه­های اصلی و منطق فازی، مجموعه مقالات همایش نقشه­برداری، سازمان نقشه­برداری کشور.
مساعدی، ابوالفضل، شریفان، حمید و شهابی، مجتبی(1386). مدیریت ریسک با شناسایی ریزاقلیم دراستان گلستان، گزارش پژوهشی کاربردی، سازمان هواشناسی کشور.
موسوی، سیدحجت، رنجبر، ابوالفضل و حاصلی، مهدی(1394). پایش و روندیابی تغییرات کاربری اراضی حوضه ابرکوه با استفاده از تصاویر ماهواره­ای. فصلنامه علمی پژوهشی اطلاعات جغرافیایی، 25(97)،.129-146
میرمحمدصادقی، امید، نبویان­ پور، محمد، یزدانی، سلمان و محمدی­ فرد، شیدا(1397). ارزیابی روش­های آشکارسازی تغییرات پوشش گیاهی و پهنه آبی تالاب­های چغاخور و سولگان. نشریه علوم و مهندسی آب، 8(20)، 21-7.
نوری، سهیلا(1383). تعیین بهترین شاخص­های پوشش گیاهی برای ارزیابی مراتع مازندران. پایان­نامه کارشناسی‌ارشد، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس.
Al Rawashdeh, S.B. (2012). Assessment of Change Detection Method Based on Normalized Vegetation Index in Environmental Studies. International Journal of Applied Science and Engineering, 10(2), 89-97.
Alagu Raja, R.A., Vetrivel, A., Kumar, S, Maithani, S., & Abhai Kumar, V. (2013). Wavelet based post classification change detection technique for urban growth monitoring. Journal of  Indian Society of Remote Sensing, 41(1), 35-43.    
Alikhah-Asl, M., Elham, F., & Mohammad, N. (2014). Evaluation of different enhancement remote sensing techniques. International Journal of Agriculture Innovations and Research, 3(1), 33-37.
Arulbalaji, P., & Gurugnanam, B. (2014). Geospatial Science for 16 Years of Variation in Land Use/Land Cover Practice Assessment around Salem District, South India. Journal of Geosciences and Geomatics, 2(1), 17-20.
Berberoglu, S., & Akin, A. (2009). Assessing different remote sensing techniques to detect land use/cover changes in the eastern Mediterranean. International Journal of Applied Earth Observation and Geoinformation, 11, 46-53.
Collins, J.B., & Woodcock, C.E. (1996). An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data. Remote Sensing of Environment, 56, 66–77.
Correa, Y., Bovolo, F., & Bruzzone, L. (2018). An approach for unsupervised change detection in multitemporal VHR images acquired by different multispectral sensors. Remote Sensing Researches, 10(4), 18-29.
Eklundh, L., & Singh, A. (1993). A comparative analysis of standardized and unstandardized principal component analysis in remote sensing. International Journal of Remote Sensing, 14, 1359–1370.
Fung, T., & Ledrew, E. (1988). The determination of optimal threshold levels for change detection using various accuracy indices. Photogrammetric Engineering and Remote Sensing, 54, 1449–1454.
Guirguis, S.K., Hassan, H.M., EL-RAEY, M. E., & Hussan, M.M.A. (1996). Technical note. Multitemporal change of Lake Brullus, Egypt, from 1983 to 1991. International Journal of Remote Sensing, 17, 2915–2921.
Hamad, R., Balzter, H., & Kolo, K. (2018). Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability, 10(10), 3421.
Jabbar, M.T., & Zhou, X. (2011). Eco-environmental change detection by using remote sensing and GIS techniques: a case study Basrah province, south part of Iraq. Journal of Environmetal Earth Sciences, DOI 10.1007/s12665- 011-0964-5.
Jensen, J.R. (2009). Remote sensing of the environment: An earth resource perspective 2/e. Pearson Education India.
Jin, S., Yang, L., Zhu, Z., & Homer, C. (2017). A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011. Remote Sensing of Environment Journal, 195(2), 44-55.
Joyce, A.T., Ivey, J.H., & Burns, G.S. (1980). The Use of Landsat MSS Data for Detecting Land Use Changes in Forestland. 14th International Symposium Remote Sensing of Environment. Ann Arbor. Michigan.12pp.
Madurapperuma, B., Rozario, P., Oduor, P., & Kotchman, L. (2015). Land-use and land-cover change detection in Pipestem Creek watershed, North Dakota. International Journal of Geomatics and Geosciences, 5(3), 416-426.
Mas, J.F. (1999). Monitoring Land-Cover Changes: A Comparison of Change Detection Techniques. International Journal Remote Sensing, 20(1), 139-152.
McCoy, R.M. (2005). Field Methods in Remote Sensing. The Guildford Press, New York, London, 41-54.
Mohamed, A., & Worku, H. (2020). Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban Climate, 31, 100545.
Parkash, A., & Gupta, R.P. (1998). Land-use mapping and change detection in a coal mining area-a case study in the Jharia coalfield, India. International Journal of Remote Sensing, 19, 391–410.
Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: a review. Annals of the Association of American Geographers, 93(2), 314-337.
Pontius, J.R.G., & Millones, M. (2011). Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407-4429.
Pontius, J.R.G., Peethambaram, S., & Castella, J.C. (2011). Comparison of three maps at multiple resolutions: a case study of land change simulation in Cho Don District, Vietnam. Annals of the Association of American Geographers, 101(1), 45-62.
Sepehry, A., & Gang-Jun, L. (2006). Flood induced land cove change detection using multitemporal ETM+ imagery. Proceedings of the 2nd Workshop of the EARSeL SIG on Land Use and Land Cover, 399-406.
Sepehry, A., & Liu, G. (2006). 'Flood Induced land cover change detection using multitemporal ETM+ imagery.', in Proceedings of the 2nd Workshop of the EARseL SIG on Land Use and Land Cover: Application and Development, Matthias Braun (ed.), European Association of Remote Sensing Laboratories and Universität Bonn, Bonn, Germany, 399-406 (Center for Remote Sensing of Land Surfaces).
Singh, A., & Harrison, A. (1985). Standardized principal components. International Journal of Remote Sensing, 6, 883–896.
Singh, A. (1989). Digital change detection techniques using remotely sensed data. International Journal of Remote Sensing, 10, 989–1003.
Sunar, F. (1998). An analysis of changes in a multi-date data set: a case study in the Ikitelli area, Istanbul, Turkey. International Journal of Remote Sensing, 19, 225–235.
Sundarakumar, K., Harika, M., Begum, S.A., Yamini, S., & Balakrishna, K. (2012). Land Use and Land Cover Change Detection and Urban Sprawl Analysis of Vijayawada City Using a Landsat Data. Engineering Science & Technology, 4, 170-178.
Virk, R., & King, D. (2006). Comparison of Techniques for Forest Change Mapping Using Landsat Data in Karnataka, India. Geocarto International, 21(4), 49-57.
Wang, S.W., Gebru, B.M., Lamchin, M., Kayastha, R.B., & Lee, W.K. (2020). Land use and land cover change detection and prediction in the Kathmandu district of Nepal using remote sensing and GIS. Sustainability, 12(9), 3925.