با همکاری مشترک دانشگاه پیام نور و انجمن جغرافیا و برنامه ریزی روستایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار شهرسازی، دانشگاه تربیت مدرس

2 دانشیار شهرسازی، دانشگاه تهران

3 استادیار شهرسازی، دانشگاه بوعلی سینا

چکیده

انرژی حرارتی سطوح شهری (LST) متغیر کلیدی برای کنترل ارتباط بین شار حرارت تابشی، نهفته و محسوس است. بدین ترتیب تحلیل و درک پویایی LST و شناسایی ارتباط آن با تغییرات منشاء انسانی برای مدل­سازی، پیش‌بینی تغییرات محیطی و، سرانجام، سیاست­گذاری شهری لازم است. از سوی دیگر، هم افزایش مقدار پوشش گیاهی یکی از کاراترین استراتژی­های کاهش اثرات خرده اقلیم شهری است. بنابراین، تحلیل روند تغییرات حرارتی سطوح و میزان همبستگی فضایی سبزینگی گیاهی با این پدیده در اثر تحولات شهرنشینی و شهرسازی شهر تهران، بین سال­های 1395-1382 شمسی مورد پژوهش واقع شده است. تصاویر ماهواره‌ای بدون پوشش ابری و صاف کلانشهر تهران توسط ماهوارۀ Landsat8 برای مرداد ماه سال 1395 و ماهوارۀ Aster برای مرداد ماه سال 1382 به کمک نرم‌افزار Envi و، از طریق الگوریتم‌های مختلف در سنجش از دور به الگوهای فضایی میزان حرارت سطوح و شاخص پوشش گیاهی نرمال شده (NDVI) کلانشهر تهران تبدیل شده است. خروجی‌های فضایی نشان می‌دهد در طی تقریباً یک دهه اخیر کمینه انرژی حرارتی سطوح c̊ 3.67 و میانگین انرژی حرارتی سطوح به میزان c̊ 0.47 با کاهش همراه بوده و این در صورتی است که میانگین مقدار شاخص پوشش گیاهی نرمال شده هم از 0.06- به 0.10 افزایش یافته است. همچنین برآورد همبستگی فضایی شاخص NDVI با LST در یک دهۀ اخیر در مناطق 22گانه شهر تهران هم حاکی از کاهش 0.02 است. این کاهش همبستگی نشان از افزایش نقش فعالیت‌های انسانی بر میزان دما و انرژی حرارتی سطوح شهری دارد. بنابراین، با توجه به نتایج به­دست آمده جهت کاهش مصرف انرژی شهری که در راستای به تعادل رساندن انرژی سطوح شهری است، نقش الگوهای مختلف توسعۀ کالبدی شهر بیش از پیش نمایان می‌گردد.

کلیدواژه‌ها

دارابی، حسن؛ سورتیجی، سجاد (پاییز 1392). «ارزیابی استراتـژیک محیط زیستی بر روی شاخص تناسب کاربری اراضی (مطالعه موردی: منطقه یک کلانشهر تهران)». فصلنامه علمی- پژوهشی برنامه‌ریزی توسعه
کالبدی
(برنامه‌ریزی کالبدی- فضایی سابق). سال دوم. شماره چهارم.
رضایی راد، هادی (1396). تحلیل اثرات برنامه‌ریزی کالبدی بر تعادل انرژی در نواحی شهر تهران. رساله دکتری. تهران: دانشگاه تربیت مدرس.
رضایی‌راد، هادی و رفیعیان، مجتبی (1393). ارزیابی و سنجش اثرات فرم معماری مجتمع‌های مسکونی در میزان غلظت آلودگی هوا با استفاده از Envi-met (نمونه موردی: قیطریه تهران). اولین همایش علمی- دانشجویی هوای پاک. تهران: جهاد دانشگاهی، دانشگاه بهشتی.
ـــــــــــ (1395). «برآورد تغییرات فضایی- زمانی شدت جزیره حرارتی کلانشهر تهران با استفاده از تصاویر ماهواره ای Landsat8 و Aster». فصلنامه علمی- پژوهشی برنامه‌ریزی منطقه‌ای مرودشت.
ـــــــــــ (1396). «روندیابی تغییرات حرارتی سطوح شهر تهران با استفاده از تصاویر ماهواره‌ای». نشریه علمی- پژوهشی پژوهش‌های محیط زیست. تهران.
 
 
 
Abrams, Michael, Simon, Hook (2005). ASTER User Handbook. Version 2. Jet Propulsion Laboratory.
Anderson, M., et. al. (2008). "A thermal- based remote sensing technigue for routine mapping of land- surface carbon, water and energy fluxes from field to regional scales". Remote Sensing of Environment. 112 (12). Pp.  4227-4241.
André, C., et. al. (2015). "Land surface temperature retrieval over circumpolar Arctic using SSM/I–SSMIS and MODIS data". Remote Sensing of Environment. 162. Pp. 1-10.
Bhang, K.J., et. al. (2009). "Evaluation of the Surface Temperature Variation With Surface Settings on the Urban Heat Island in Seoul, Korea, Using Landsat-7 ETM+ and SPOT". Geoscience and Remote Sensing Letters. IEEE. Vol. 6. Issue: 4. Pp. 708- 712.
Bobrinskaya, Maria (2012). Remote Sensing for Analysis of Rela- Tionships between Land Cover and Land Surface Temperature in Ten Megacities. (December).
Chander, G., et. al. (2009). "Summary of current radiometric". Remote sensing of environmental. 113(5). Pp. 893-903.
Collatz, G.J., et. al. (2000). "A mechanism for the influence of vegetation on the response of the diurnal temperature range to changing climate". Geophys. Res. Lett. 27. Pp. 3381-3384.
Gartland, Lisa (2008). Heat Islands Understanding and Mitgating Heat in Urban Areas. Earthscan in the UK and USA in: Typeset by MapSet Ltd. Gateshead. U. K.
Guillevic, Pierre., et. al. (2012). "Land Surface Temperature product validation using NOAA's surface climate observation networks—Scaling methodology for the Visible Infrared Imager Radiometer Suite (VIIRS) ". Remote Sensing of Environment. 124.
Huang, C., et. al. (2010). "An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks". Remote Sens. Environ. 114. Pp. 183–198.
José, A., et. al. (2004). "Land surface temperature retrieval from LANDSAT TM 5". Remote Sensing of Environment. 90. Pp. 434 – 440.
Kerr, Y., et. al. (2004). Land surface temperature retrieval: Techniques and applications: Case of the AVHRR. In D. A. Quattrochi, & J. C. Luwall (Eds.). Thermal remote sensing in land surface processes. (pp. 33–109). Boca Raton Fl.: CRC Press.
Kotroni, J., et. al. (2009). "Analyses of summer lightning activity and precipitation in the Central and Eastern Mediterranean". Atmospheric Research. 91.pp.453-458.
Li, Hui (2016). Pavement Materials for Heat Island Mitigation: Design and Management Strategies. Oxford. UK: Elsevier.
Markham, B.L., et. al. (2004). "Landsat sensor performance: History and current status. IEEE Trans". Geosci. Remote Sens. 42. Pp. 2691–2694.
Meng, Q.Y., et. al. (2009). "Determinants of indoor and personal exposure to PM2.5 of indoor and outdoor origin during the RIOPA study". Atmos Environ. 43(36). Pp. 5750–5758.
Moran, M., et. al. (2009). "Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems using time series of soil surface temperature". Agricultural and Forest Meteorology. 149. Pp. 59–72.
Niu, C. Y., et. al. (2015). "Analysis of soil moisture condition under different land uses in the arid region of Horqin sandy land, northern China". Solid Earth. 6. Pp. 1157 -1167.
Owen, T.W., et. al. (1998). "Remotely sensed surface parameters governing urban climate change". Internal Journal of Remote Sensing. 19. Pp. 1663-1681.
Pitman, A., et. al. (2011). "Importance of background climate in determining impact of land-cover change on regional climate". Nature Climate Change. 1. Pp. 472–475.
Rajeshwari, A.; Mani, N. D. (2014). "ESTIMATION OF LAND SURFACE TEMPERATURE OF DINDIGUL DISTRICT USING LANDSAT 8 DATA". International Journal of Research in Engineering and Technology. Vol. 03. Issue 05.
Rezaei Rad, Hadi.; Rafieian, Mojtaba (2016). Evaluating The Effects of High rise building On Urban Heat Island by Sky View Factor (A case study: Narmak neighborhood Tehran). Basic Studies and New Technologies of Architecture and Planning Naqshejahan, Tatbiat Modares. Tehran.
Rezaei Rad, Hadi., et. al. (2016). "Evaluating the effects of increasing of building height on land surface temperature". International Journal of Urban Management and Energy Sustainability. 1 (1). Pp. 11-16.
Roy, D. P., et. al. (2014). "Landsat-8: Science and product vision for terrestrial global change research". Remote Sens. Environ. 145. Pp. 154–172.
Santamouris, Mat.; Kolokotsa, Denia (2016). URBAN CLIMATE MITIGATION. First published 2016 by Routledge. New York.
Shukla, J.; Mintz, Y. (1982). "The influence of land-surface-evapotranspiration on the earth’s climate". Science. 247. Pp. 1322–1325.
Sobrino, J. A., et. al. (1993). "Caselles, V.; Coll, C. Theoretical split-window algorithms for determining the actual surface temperature". Il Nuovo Cimento. 16. Pp. 219–236.
Srivanit, Manat.; Hokao, Kazunori (2012). Thermal Infrared Remote Sensing for Urban Climate and Environmental Studies: An Application for the City of Bangkok, Thailand, JARS. 9(1).
Sun, J., et. al. (2011). "Parameter estimation of coupled water and energy balance models based on stationari constraints of surface state, Water Resour". Res. 47. W02515.
Svensson, M. K.; Eliasson, I. (2002). "Diurnal air temperatures in built‐up areas in relation to urban planning, Landsc". Urban Plan. Vol. 61. No. 1. Pp. 37–54.
Tan, J., et. al. (2009). "The urban heat island and its impact on heat waves and human health in Shanghai". Int. J. Biometeorol. 54. Pp. 75–84.
Tran, N., et. al. (2009). "Strategies for Design and Construction of High‐Reflectance Asphalt Pavements". Transportation Research Record: Journal of the Transportation Research Board. No. 2098. Transportation Research Board of the National Academies. Washington, D.C. pp. 124–130.
Weng, Q. (2009). "Thermal infrared remote sensing for urban climate and environmental studies: Methods,
applications, and trends". ISPRS Journal of Photogrammetry and Remote Sensing 64. Pp. 335–344.
Weng, Q., et. al. (2014). "Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data". Remote Sens. Environ. 145. Pp. 55–67.
Yang, X., et. al. (2013). "Evaluation of a microclimate model for predicting the thermal behavior of different ground surfaces, Build". Environ. Vol. 60. Pp.  93–104.
Yuan, Fei., et. al. (2007). "Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery". Remote Sensing of Environment. 106.
Zareie, S., et. al. (2016). "Derivation of land surface temperature from Landsat Thematic Mapper (TM) sensor data and analyzing relation between land use changes and surface temperature". Manuscript under review for journal Solid Earth.
Zhou, Y.; Ren, G. (2011). "Change in extreme temperature event frequency over mainland China, 1961–2008". Clim. Res. 50. Pp. 125–139.