با همکاری مشترک دانشگاه پیام نور و انجمن جغرافیا و برنامه ریزی روستایی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه معماری و شهرسازی، دانشگاه ایلام، ایلام، ایران

2 دانشجوی کارشناسی‌ارشد جغرافیا و برنامه‌ریزی شهری، دانشگاه ایلام، ایلام، ایران

10.30473/psp.2025.73523.2759

چکیده

در سال‌‌های اخیر، دانش برنامه‌ریزی و طراحی شهری، متناسب با گستره خود، به دنبال شناسایی روش‌هایی برای کاهش خسارات ناشی از زلزله در شهرها به عنوان زیستگاه اصلی انسان بوده است. لذا این مطالعه با هدف ارزیابی آسیب‌پذیری لرزه‌ای شهر ایلام انجام شده است. این پژوهش از نظر هدف کاربردی بر اساس رویکرد توصیفی- تحلیلی انجام شده است. داده‌های اولیه اسناد و نقشه‌های موجود از سازمان‌های مرتبط جمع‌آوری شد. برای تجزیه و تحلیل داده‌ها از مدل دیمتل- فازی و سیستم اطلاعات جغرافیایی استفاده شده است. برای تعیین آسیب‌‌پذیری لرزه‌ای شهر ایلام، شاخص‌هایی مانند تراکم جمعیت، کاربری اراضی،  تراکم ساختمان، شبکه معابر، فاصله از فضاهای سبز، فاصله از گسل، قدمت ابنیه، تعداد طبقات، کیفیت ابنیه، مصالح ساختمان، زمین شناسی و شیب به کار گرفته شدند. بر اساس نتایج، 04/19 درصد کل شهر ایلام در مناطق با آسیب‌پذیری زیاد و خیلی زیاد قرار داشت که بیشتر در مناطق مرکزی شهر واقع شده و به دلیل نوع بافت و مصالح به کار رفته در ساخت آن از ایمنی کمتری برخوردار هستند.

کلیدواژه‌ها

Alhawasli, H; & Daneshjoo, KH. (2018). Improving Residential Buildings Performance against the Explosion Using Passive Defense RequirementsCase Study: Designing a Residential Building in Damascus. Trends in Civil Engineering and its Architecture, 2(3): 1-8.
https://doi.org/10.32474/TCEIA.2018.02.000138
Arkhi, S, Kelvi, S. (2019), Comparison of pixel-based and object-oriented classification methods in preparing land use maps using satellite images (Case study: Ilam city), Geography and Urban-Regional Planning, 9 (32): 1-16. (In Persian).
Ansari Lari, A, Najafi, E, Nourbakhsh, S F. (2011), Geomorphological Capabilities and Limitations of Physical Development of Ilam City, Environmental Planning, 4 (15): 1- 16. (In Persian).
Beroya-Eitner, M.A. (2016). Ecological vulnerability indicators. Ecol. Indic, 60, 329–334.
Boad Technique Consulting Engineers (2013), Comprehensive Plan Review Studies, General Directorate of Roads and Urban Planning of Ilam Province. (In Persian).
Boloorani. A.D, Shorabeh S.N, Neysani Samany. N, Mousivand. A, Kazemi. Y, Jaafarzadeh. N, Zahedi . A, Rabiei.  J. (2021).Vulnerability mapping and risk analysis of sand and dust storms in Ahvaz, IRAN. Environ Pollut.,Jun 15; 279:116859. Doi: 10.1016/j.envpol.2021.116859. Epub 2021 Mar 10. PMID: 33744637.
Cariolet, J.M., Vuillet, M.; Diab, Y.(2019). Mapping urban resilience to disasters–A review. Sustain. Cities Soc. , 51, 101746.
https://doi.org/10.1016/j.scs.2019.101746
Celik, E., Akyuz, E. (2015). A fuzzy DEMATEL method to evaluate critical operational hazards during gas freeing process in crude oil tankers, Journal of Loss Prevention in the Process Industries, 38: 243-253.
https://doi.org/10.1016/j.jlp.2015.10.006
Duy, P.N,Chapman, L, Tight, M.(2019). Resilient transport systems to reduce urban vulnerability to floods in emerging-coastal cities: A case study of Ho Chi Minh City, Vietnam. Travel Behav. Soc, 15, 28–43.
https://doi.org/1016/j.tbs.2018.11.001
Estrada, F., Botzen, W.W., Tol, R.S.(2015). Economic losses from US hurricanes consistent with an influence from climate change. Nat. Geosci, 8, 880–884.
https://doi.org/ 10.1038/ngeo2560
Fazel, S, Taghvaei, M. Mahmoudzadeh, A. (2019), Explaining the concept of risk and measuring the seismic risk of urban areas (Case study: Najafabad), Quarterly Journal of Human Geography Research, 51 (1): 1-21. (In Persian).
 https://doi.org/ 10.22059/jhgr.2017.61600
Fakhruddin, B.S., Reinen-Hamill, R., Robertson, R.(2019). Extent and evaluation of vulnerability for disaster risk reduction of urban Nuku’alofa, Tonga. Prog. Disaster Sci, 2, 100017.
Galbusera, L., Giannopoulos, G.(2018). On input-output economic models in disaster impact assessment. Int. J. Disaster Risk Reduct, 30, 186–198.
https://doi.org/ 10.1016/j.ijdrr.2018.04.030
Goli Mokhtari, L, Shakari Badi, A. Bashkani, Zahra (2018), Assessing the vulnerability of Kashan urban area to earthquake hazard using the IHPW model, Environmental Hazards, No. 16, 105-126. (In Persian).
Hakala, E., Lähde, V., Majava, A., Toivanen, T.,Vadén, T., Järvensivu, P., Eronen, J.T. (2019). Northern Warning Lights: Ambiguities of Environmental Security in Finland and Sweden. Sustainability, 11, 2228.
Hoffmann, S., Beierkuhnlein, C.(2020). Climate change exposure and vulnerability of the global protected area estate from an international perspective. Divers. Distrib., 26, 1496–1509.
https://doi.org/10.1111/ddi.13136
Khedmatzadeh, A. Mousavi, M. Yousefzadeh, A. (2021), “Analysis of urban vulnerability indicators with an earthquake crisis management approach (case study: Urmia city)”, Human Settlement Planning Studies, 16(1): 43-62. (In Persian).
 Mahmoudi, S.,Jalali, A., Ahmadi, . M , Abasi, P , Salari, N.(2019). Identifying critical success factors in Heart Failure Self-Care using fuzzy DEMATEL method. Appl. Soft Comput. J. 84, 105729.
 Mohammadfam, I., Mirzaei, M,. Aliabadi, A.R. Soltanian, M.(2019). Tabibzadeh and M. Mahdinia, Investigating interactions among vital variables affecting situation awareness based on Fuzzy DEMATEL method. Int. J. Ind. Ergon. 74, 102842.
Majhi, S.K., Hossain, S.S., Padhi, T.(2020). MFOFLANN: Moth flame optimized functional link artificial neural network for prediction of earthquake magnitude. Evol. Syst., 11, 45–63.
https://doi.org/1007/s12530-019-09293-6
Mishra, A., Ghate, R., Maharjan, A., Gurung, J., Pathak, G., Upraity, A.N. (2017).Building ex ante resilience of disaster-exposed mountain communities: Drawing insights from the Nepal earthquake recovery. Int. J. Disaster Risk Reduct., 22, 167–178.
Naik, S.P., Kim, Y.-S., Kim, T., Su-Ho, J.(2017). Geological and structural control on localized ground effects within the Heunghae Basin during the Pohang Earthquake, South Korea. Geosciences 2019, 9, 173.
Noy, I., Vu, T.B.(2010). The economics of natural disasters in a developing country: The case of Vietnam. J. Asian Econ, 21, 345–354.
Pandit, A., Biswal, K.C. (2019). Prediction of earthquake magnitude using adaptive neuro fuzzy inference system. Earth Sci. Inform., 12, 513–524.
Pagano, A., Pluchinotta, I., Giordano, R., Vurro, M. (2017). Drinking water supply in resilient cities: Notes from L’Aquila earthquake case study. Sustain. Cities Soc, 28, 435–449.
https://doi.org/10.1016/j.scs.2016.09.005
Parvizian, A, Maleki, S. (2022). Vulnerability of urban areas to earthquake risk based on the IHWP model (case study: areas of Region 6 of Ahvaz metropolis), Scientific Journal of Land Planning, 14 (2): 571-594. (In Persian).
Qureshi, S., Shorabeh, S.N., Samany, N.N., Minaei, F., Homaee, M., Nickravesh, F., Firozjaei, M.K., Arsanjani, J.J.(2021). A New Integrated Approach for Municipal Landfill Siting Based on Urban Physical Growth Prediction: A Case Study Mashhad Metropolis in Iran. Remote Sens, 13, 949.
https://doi.org/10.3390/rs13050949
Shah, A.A., Ye, J., Abid, M., Khan, J., Amir, S.M. (2018). Flood hazards: Household vulnerability and resilience in disaster-prone districts of Khyber Pakhtunkhwa province, Pakistan. Nat. Hazards, 93, 147–165.
https://doi.org/10.1007/s11069-018-3293-0
Schilling, J., Hertig, E., Tramblay, Y., Scheffran, J. (2020). Climate change vulnerability, water resources and social implications in North Africa. Reg. Environ. Chang, 20, 1–12.
Shen, S., Cheng, C., Song, C., Yang, J., Yang, S., Su, K., Yuan, L., Chen, X. (2018). Spatial distribution patterns of global natural disasters based on biclustering. Nat. Hazards 2, 92, 1809–1820.
https://doi.org/10.1007/s11069-018-3279-y
Singh, R., Kumar, R. (2015).Vulnerability of water availability in India due to climate change: A bottom-up probabilistic Budyko analysis. Geophys. Res. Lett, 42, 9799–9807.
https://doi.org/10.1002/2015GL066363
Singh, S.J., Fischer-Kowalski, M., Haas, W. (2018). The sustainability of humanitarian aid: The Nicobar Islands as a case of ‘complex disaster’. In The Asian Tsunami and Post-Disaster Aid; Springer: Singapore, pp. 143–165.
Tavakolinia, J, Zarghami, S. Teymouri, A. Eskanderpour, M. (2019), An analysis of spatial pathology of the physical structure and social fabric of the city with a passive defense approach, case study: District Six of Tehran Metropolitan Area, Applied Research in Geographical Sciences, No. 53, 51-73. (In Persian).
 https://doi.org/10.29252/jgs.19.53.51
Thakkar, J.J. (2021). Decision-Making Trial and Evaluation Laboratory (DEMATEL), Multi-Criteria Decision Making, Studies in Systems, Decision and Control, Springer, Singapore.
Tziavou, O., Pytharouli, S., Souter, J. (2018). Unmanned Aerial Vehicle (UAV) based mapping in engineering geological surveys: Considerations for optimum results. Eng. Geol, 232, 12–21.
 Song,T., Chen, M., Xu, Y., Wang, D., Song, X., Tang, X. (2021). Competition-guided multi-neighborhood local search algorithm for the university course timetabling problem, Appl. Soft Comput. 11, no. 3, 607–624.
Varis, O., Kummu, M., Salmivaara, A. (2012). Ten major rivers in monsoon Asia-Pacific: An assessment of vulnerability. Appl. Geogr, 32, 441–454.
Wu, J., He, X., Li, Y., Shi, P., Ye, T., Li, N. (2019). How earthquake-induced direct economic losses change with earthquake magnitude, asset value, residential building structural type and physical environment: An elasticity perspective. J. Environ. Manag, 231, 321–328.
Xu, Jiuping; & Lu, Yi. (2018). Towards an earthquake-resilient world: from postdisaster reconstruction to pre-disaster prevention. Environmental Hazards, 17(4): 269– 275.
Yariyan, P., Zabihi, H., Wolf, I.D., Karami, M., Amiriyan, S. (2020). Earthquake risk assessment using an integrated Fuzzy Analytic Hierarchy Process with Artificial Neural Networks based on GIS: A case study of Sanandaj in Iran. Int. J. Disaster Risk Reduct, 50, 101705.
Ylenia, S., Luca, S., & Maria, R.V. (2021). “Seismic response of masonry buildings in historical centres struck by the 2016 Central Italy earthquake”, Calibration of a vulnerability model for strengthened conditions, Construction and Building Materials, Vol. 299, 123911,
https://doi.org/10.1016/j.conbuildmat.2021.123911.
Yukio, T., Yuichi, S., Yuta, N., Yuichi. O. (2019). “An example of three dimensional ground model development for earthquake response analysis by using a simple ground modeling system”, Japanese Geotechnical Society Special Publication, Vol. 6, Issue 2, pp. 45-52.
https://doi.org/10.3208/jgssp.v06.GIZ07