In collaboration with Payame Noor University and Iranian Geography and Urban Planning Association

Document Type : Research Paper

Author

Assistant Professor, Department of Geography, Payame Noor University. Tehran, IRAN

10.30473/psp.2024.57641.2437

Abstract

The main purpose of the current research is to measure the comfort level of public primary schools in Karoun town based on Mahani and Gioni bioclimatic index. In this research, the meteorological data of temperature, precipitation, humidity and prevailing wind in a period of 30 years (1988-2018) have been used. The graphs are drawn with Climate Consultant and Excel software, and the maps are drawn with ArcGIS software. The results of the monthly index tables show that from June to August (3 months), the A1 dry index conditions prevail, which indicates the high fluctuation of daytime heat (more than 10 degrees Celsius) and low relative humidity, which causes discomfort. To solve this problem, it is suggested that materials with medium to high heat capacity should be used in the design of buildings. On the other hand, in the months of June to August (3 months), the A2 dry index prevails, which indicates warm or moderate nights with relatively low humidity in the environment. For the months of December, January and February (3 months), the A3 dry index prevails, which indicates cold climatic conditions in the region. To deal with these conditions, it is necessary to use energy to heat the interior spaces of buildings. Of course, the studied area does not fall under the conditions of H1, H2 and H3 humid conditions in any of the months of the year. Also, according to the results of Giuni's method, in three months of the year (June, July and August) the changes in air thermal conditions is completely out of comfort zone. In September, the weather is comfortable only for a short period of time (midnight to before sunrise). The final control of the building's air, especially during the hottest hours of the day in the months of May to August, is only possible by using air conditioners. According to the studies carried out and their compliance with the school construction standards of the country and taking into account the climatic conditions of the region, the results show that the necessary standards for the construction of schools in the study area and taking into account the climatic conditions of the region are not considered and all the studied schools do not have the necessary standards.

Keywords

امیدوار، کمال، علیزاده شورکی، یحیی و زارعشاهی، عبدالنبی (1390).تعیین مطلوبیت شرایط آسایش مدارس شهر یزد بر اساس شاخص‌های زیست- اقلیمی. نشریه شهر و معماری بومی، (1)1 ،117-107 .
جانسون،وارن (1376). اقلیم و معماری با تاکید بر معماری سنتی خاورمیانه حبیبی نوخندان، مجید فصلنامه تحقیقات جغرافیایی، (12)46  ،159-152.
حجازی‌زاده، زهرا و کربلایی درئی، علیرضا (1397). مقدمه‌ای بر اقلیم اسایش حرارتی و شاخص‌های آن. تهران: انتشارات آکادمیک.
رازجویان، محمود (1367). آسایش در پناه معماری همساز با اقلیم. تهران: انتشارات دانشگاه شهید بهشتی.
سازمان نوسازی و توسعه وتجهیز مدارس کشور (1393). اصول و معیارهای طراحی فضاهای آموزشی و پرورشی.
سالنامة آماری استان خوزستان (1395). سازمان مدیریت و برنامه‌ریزی استان خوزستان.
سالنامة آماری مدارس شهر اهواز (1398). اداره کل آموزش و پرورش استان خوزستان.
سالنامة آماری هواشناسی، (1398). اداره کل هواشناسی استان خوزستان.
قبادیان، وحید، فیض‌مهدوی، محمد، واتسون، دانلد، لب، کنت (1384). طراحی اقلیمی اصول نظری و اجرایی کاربرد انرژی در ساختمان. تهران: انتشارات دانشگاه تهران.
کسمائی، مرتضی (1382). اقلیم و معماری، انتشارات شرکت سرمایه‌گذاری خانه‌سازی ایران.
کسمایی،مرتضی (1373). پهنه‌بندی اقیمی ایران، ساختمان‌های آموزشـی. انتشارات سازمان نوسازی و تجهیز مدارس کشور.
Auliciems. A. Thermal requirements of secondary schoolchildren in winter. J. Hyg., 67 (1969), pp. 59-65
Bak-Biro, Z.; D.J. Clements-Croome, N. Kochhar, H.B. Awbi, M.J. Williams. Ventilation rates in schools and pupils performance. Build. Environ, 48 (2012), 215-223
Bluyssen PM. Health, comfort and performance of children in classrooms – New directions for research. Indoor and Built Environment. 2017, 26(8):1040-1050. doi:10.1177/1420326X16661866
Bluyssen, P. M., Zhang, D., Kurvers, S., Overtoom, M., & Ortiz-Sanchez, M. (2018). Self-reported health and comfort of school children in 54 classrooms of 21 Dutch school buildings. Building and Environment, 138, 106–123.
Bluyssen, P.M. Health, Comfort and Performance of Children in Classrooms–New Directions for Research. Indoor Built Environ. 2016, 26, 1040–1050.
Bluyssen, P.M.; Zhang, D.; Kurvers, S.; Overtoom, M.; Ortiz-Sanchez, M. Self-Reported Health and Comfort of School Children in 54 Classrooms of 21 Dutch School Buildings. Build. Environ. 2018, 138, 106–123
Borrego, C.; H. Martins, O. Tchepel, L. Salmim, A. Monteiro, A.I. Miranda, How urban structure can affect city sustainability from an air quality perspective, Environ. Model. Software 21(4) (2006) 461–467.
Bröde, Peter; Fiala, Dusan; Błażejczyk, Krzysztof; Holmér, Ingvar; Jendritzky, Gerd; Kampmann, Bernhard; Tinz, Birger; Havenith, George (2011-05-31). "Deriving the operational procedure for the Universal Thermal Climate Index (UTCI)". International Journal of Biometeorology. 56 (3): 481–494. doi:10.1007/s00484-011-0454-1ISSN 0020-7128PMID 21626294.
Bronzaft, A.L.; D.P. McCarthy. The effect of elevated train noise on reading ability. Environ. Behav, 7 (1975), 517-527
Chen, K.W.; L. Norford, Evaluating urban forms for comparison studies in the massing design stage, Sustainability 9 (6) (2017) 987.
Chew, L.W.; L.K. Norford, Pedestrian-level wind speed enhancement in urban street canyons with void decks, Build. Environ. 146 (2018) 64–76.
Csobod, E.; I. Annesi-Maesano, P. Carrer, S. Kephalopoulos, J. Madureira, P. Rudnai, E. de Oliveira Fernandes SINPHONIE, Schools Indoor Pollution and Health Observatory Network in Europe Final report European Union, Italy (2014)
Dai, Y.W.' C.M. Mak, Z.T. Ai, J. Hang, Evaluation of computational and physical parameters influencing CFD simulations of pollutant dispersion in building arrays, Build. Environ. 137 (2018) 90–107.
De Giuli, V.; Da Pos, O.; De Carli, M. Indoor Environmental Quality and Pupil Perception in Italian Primary Schools. Build. Environ. 2012, 56, 335–345
Dijken van, F.; J.E.M.H. Bronswijk van, J. Sundell. Indoor environment in Dutch primary schools and health of the pupils Build. Res. Inf., 34 (2006), 437-446
Dorizas, P.V.; M.N. Assimakopoulos, M. Santamouris. A holistic approach for the assessment of the indoor environmental quality, student productivity, and energy consumption in primary schools Environ. Monit. Assess., 187 (2015), p. 259
Evans, G.W.; S. Hygge, M. Bullinger. Chronic noise and psychological stress. Psychol. Sci., 6 (1995), 333-338
Fanger, P. O. (1970). Thermal comfort: analysis and applications in environmental engineering. Danish Technical Press
Fantozzi, F.; Hamdi, H.; Rocca, M.; Vegnuti, S. Use of Automated Control Systems and Advanced Energy Simulations in the Design of Climate Responsive Educational Building for Mediterranean Area. Sustainability 2019, 11, 1660.
Feng Yuan,Runming Yao,Sasan Sadrizadeh,Baiyi Li,Guangyu Cao,Shaoxing Zhang,Shan Zhou,Hong Liu,Anna Bogdan,Cristiana Croitoru,Arsen Melikov,C. Alan Short,Baizhan Li. Journal of Building Engineering. January 2022
Giuli de, V.; R. Zecchin, L. Corain, L. Salmasso. Measurements of indoor environmental conditions in Italian classrooms and their impact on children's comfort. Indoor Built Environ., 24 (2015), 689-712
Haddad, S.; P. Osmond, S. King, S. Heidari, Developing assumptions of metabolic rate estimation for primary school children in the calculation of the Fanger PMV model, Windsor, UK: Proc. of 8th Windsor conference 10–14 April 2014, NCEUB 2014, workshop 2 ‘schools and young people’.
Haverinen-Shaughnessy, U.; J. Turunen, J. Palonen, T. Putus, J. Kurnitski, R. Shaughnessy. Health and academic performance of sixth grade students and indoor environmental quality in Finnish elementary schools British. Journal of Educational Research, 2 (2012), 42-58
Haverinen-Shaughnessy, U.; R.J. Shaughnessy, E.C. Cole, O. Toyinbo, D.J. Moschandreas. An assessment of indoor environmental quality in schools and its association with health and performance Build. Environ., 93 (2015), 35-40
Haverinen-Shaughnessy, U.; R.J. Shaughnessy. Effects of classroom ventilation rate and temperature on students' test scores PLoS One, 10 (2015, August 28), Article e0136165
Heschong. L.; Day lighting and student performance. ASHRAE J., 44 (2002), 65-67
Hygge. S. Classroom experiments on the effects of different noise sources and sound levels on long-term recall and recognition in children. Appl. Cognit. Psychol., 17 (2003), 895-914
Jerman, M., & Černý, R. (2012). Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials. Energy and Buildings, 53, 39–46. doi:10.1016/j.enbuild.2012.07.002 
Kim, J.L.E.; L. Mi, Y. Johansson, M. Smedje, G. Nörback. Current asthma and respiratory symptoms among pupils in relation to dietary factors and allergens in the school environment Indoor Air, 15 (2005), 170-182
Kwok, A.G.; C. Chun. Thermal comfort in Japanese schools. Sol. Energy, 74 (2003), 245-252
Laiman, R.; C. He, M. Mazaherri, S. Clifford, F. Salimi, L.R. Crilley, M.A.M. Mokhtar, L. Morawska. Characteristics of ultrafine particle sources and deposition rates in primary school classrooms Atmos. Environ., 94 (2014), 28-35
Lamberti, G.; F. Fantozzi and G. Salvadori, "Thermal comfort in educational buildings: Future directions regarding the impact of environmental conditions on students' health and performance," 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Madrid, Spain, 2020, 1-6,
Lamberti, G.; Fantozzi, F.; Salvadori, G. Thermal Comfort in Educational Buildings: Future Directions Regarding the Impact of Environmental Conditions on Students’ Health and Performance. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2020; 1–6.
Lamberti, G.; Salvadori, G.; Leccese, F.; Fantozzi, F.; Bluyssen, P.M. Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward. Sustainability 2021, 13, 10315. https://doi.org/10.3390/su131810315
Lee, K. Y., & Mak, C. M. (2021). Effects of wind direction and building array arrangement on airflow and contaminant distributions in the central space of buildings. Building and Environment, 205, 108234. doi:10.1016/j.buildenv.2021.108234 
Liang, H.H.; T.P. Lin, R.L. Hwang. Linking occupants' thermal perception and building thermal performance in naturally ventilated school buildings. Appl. Energy, 94 (2012), pp. 355-363
Madureira, J.; I. Paciencia, E. Ramos, H. Barros, C. Pereira, J.P. Teixeira, E. de Oliveira Fernandes. Children's Health and indoor air quality in Primary schools and homes in Portugal - study design J. Toxicol. Environ. Health, A78 (2015), 915-930
Mendell, M.; Heath, G. Do Indoor Pollutants and Thermal Conditions in Schools Influence Student Performance? A Critical Review of Literature. Indoor Air 2005, 15, 27–52.
Mi, Y.H.N.; D. Tao, J. Mi, Y.L. Ferm. Current asthma and respiratory symptoms among pupils in Shanghai, China: influence of building ventilation, nitrogen dioxide, ozone and formaldehyde in classrooms Indoor Air, 16 (2006), 454-464
Michael, A., & Heracleous, C. (2017). Assessment of natural lighting performance and visual comfort of educational architecture in Southern Europe: The case of typical educational school premises in Cyprus. Energy and Buildings, 140, 443–457.
Montazami, A.; M. Wilson, F. Nicol. Aircraft noise, overheating and poor air quality in classrooms in London primary schools. Build. Environ., 52 (2012), 139-141
Mydlarz, C.A.; R. Conetta, D. Connolly, T.J. Cox, J.E. Dockrell, B.M. Shield. Comparison of environmental and acoustical factors in occupied school classrooms for 11-16 year old students. Build. Environ., 60 (2013), 265-271
Padilla-Marcos, M.A.; A. Meiss, J. Feijo-Mu ´ noz, ˜ Proposal for a simplified CFD procedure for obtaining patterns of the age of air in outdoor spaces for the natural ventilation of buildings, Energies 10 (9) (2017) 1252.
Rodríguez, C. M., Coronado, M. C., & Medina, J. M. (2021). Thermal comfort in educational buildings: The Classroom-Comfort-Data method applied to schools in Bogotá, Colombia. Building and Environment, 194, 107682.
Takaoka, M.; K. Suzuki, D. Nörback. Sick building syndrome among junior high school students in Japan in relation to the home and school environment Global J. Health Sci., 8 (2016), 165-177
Ter Mors. S. Adaptive thermal comfort in primary school classrooms: creating and validating PMV-based comfort charts. Build. Environ., 46 (2011), 2454-2461
Toftum, J.; B.U. Kjeldsen, P. Wargocki, H. Mena, E.M.N. Hansen, G. Clausen. Association between classroom ventilation mode and learning outcome in Danish schools Build. Environ., 92 (2015), 494-503
Wargocki, P.; D.P. Wyon. The effects of moderately raised classroom temperatures and classroom ventilation rate on the performance of schoolwork by children (RP-1257). HVAC R Res., 13 (2007), 193-220
Weirich, T. L. (2008). Hypothermia/ Warming Protocols: Why Are They Not Widely Used in the OR? AORN Journal, 87(2), 333–344. doi:10.1016/j.aorn.2007.08.021 
Winterbottom, M.; A. Wilkins. Lighting and discomfort in the classroom. J. Environ. Psychol., 29 (2009), 63-75
Wolkoff, P., & Kjærgaard, S. K. (2007). The dichotomy of relative humidity on indoor air quality. Environment International, 33(6), 850–857. doi:10.1016/j.envint.2007.04.004 
Wooll, Maggie (2022), How to get out of your comfort zone (in 6 simple steps), March 11, 2022 – 22, https://www.betterup.com/blog/comfort-zone
Yildirim, K.; K. Cagatay, N. Ayalp. Effect of wall colour on the perception of classrooms. Indoor Built Environ., 24 (2015), 607-616.